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We show the equivalence of the Gibbs ensembles at the level of measures for
one-dimensional Markov-Systems with arbitrary boundary conditions. That is,
the limit of the microcanonical Gibbs ensemble is a Gibbs measure with an
interaction depending on the microcanonical constraint. In fact the usual
microcanonical condition is replaced by the sharper constraint that all type
frequencies of neighboring spins (including the boundary spins) are fixed. When
conditioning on a set of different frequencies of neighboring spins compatible
with physical quantities like energy density we get the usual microcanonical
ensemble. We show that the limit is a Gibbs measure for a nearest neighbor
potential depending on the pair measure which maximizes the entropy on the
given set of pair measures. For this we show the large deviation property of the
pair empirical measure for arbitrary boundary conditions. We establish analo-
gous results for finite range potentials.

KEY WORDS: Equivalence of ensembles; microcanonical entropy; k-sample
empirical measure; large deviations; Euler trails.

1. INTRODUCTION

The problem of equivalence of ensembles, tracing back to Gibbs (1902),
is one of the classical problems of Statistical Mechanics. Here we are
concerned with the equivalence of microcanonical and grandcanonical
ensembles in one-dimensional systems, and we ask for equivalence in the
strongest possible sense. If equivalence is interpreted in the classical weak
sense of thermodynamic functions, it is well known that, under suitable
conditions on the interaction, the infinite-volume limits of the specific



microcanonical entropy and of the Gibbs free energy per volume exist and
are related to each other by a Legendre–Fenchel transform, see refs. 1 and 2.
We refer to this statement as the equivalence of the Gibbs ensembles at the
level of thermodynamic functions. Another approach is to be found in the
works of Thompson, (3) Aizenman et al., (4) and Georgii, (5) where one works
directly with infinite-volume states, defining the microcanonical and the
canonical Gibbs measures by local specifications as in the familiar theory
of the Gibbs measures for the grandcanonical Gibbs ensemble. These
ensembles are called equivalent in the sense of infinite-volume states, if the
microcanonical Gibbs measures are convex mixtures of the grandcanonical
Gibbs measures with different parameters.

A more natural but deeper question is the complete asymptotic equiv-
alence of finite volume measures in the sense that the microcanonical and
the grandcanonical Gibbs ensembles in finite boxes have the same infinite-
volume limits. Since Gibbs’ time, many proofs have been offered of this
general theorem. Deuschel et al. (6) and Georgii (7–10) use a large deviation
principle for the empirical measures to prove the equivalence at the level of
measures. Lewis et al. (11) show the equivalence with a quite different large
deviation theory approach. However these papers are limited to the case of
periodic boundary conditions or to a spatial averaging of the microcano-
nical Gibbs ensembles with configurational boundary conditions.

An alternative approach is given by Menzel (12) where he showed a
conditional limit theorem for Gibbs measures on Z+ with finite state spaceE.
This method is based on a conditional probability formula from ref. 13.
Georgii and Adams (14) could not use this method for the whole Z because it
came out that the starting point 0 of Z+ is necessary. This is also the case in
ref. 15 where Csiszár et al. showed a conditional limit theorem for inde-
pendent identically distributed random variables X1, X2,... taking values in
a finite set under Markov conditioning. They do not show the limiting
behavior for the two boundary terms. As a referee pointed out there is a
paper, ref. 16 based on ref. 15 where they handle the same limit theorem
but with constrains similar to microcanonical ones. However the boundary
effect is not handled there.

In this paper we establish the complete equivalence in the sense above
for one-dimensional Markov systems with finite state space E and arbitrary
boundary conditions. To calculate the probabilities of cylinder events, we
use the BEST Theorem of graph theory to count explicitly the number of
configurations compatible with the given type frequencies of neighboring
pairs including the two boundary pairs.

In the usual microcanonical Gibbs ensemble one gives equal weight to
configurations in finite subsets of the lattice Z with the same energy and
particle densities. If we consider nearest neighbor interaction of particles at
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the lattice sites of finite subsets of Z we have two extra energy contribu-
tions coming from the left and right boundary interaction. These contribu-
tions from the boundary have a global effect on the microcanonical Gibbs
ensemble of a finite subset of the lattice. However, our results imply that in
the thermodynamic limit the global effect disappears. See also our results in
ref. 17 for the one-dimensional Ising model.

The type frequencies are given by a probability measure Pn on the set
E×E of pairs. We write Mg

n, Pn
for the microcanonical Gibbs ensemble with

prescribed type frequencies in a finite set Ln with boundary condition
g ¥ W 2 {per, free}. This microcanonical Gibbs ensemble provides more
information than the microcanonical Gibbs ensemble for energy and par-
ticle density because several frequencies of pairs with the same energy and
particle density can occur. In a second step we only require that the type
frequencies are compatible with a microcanonical constraint to get the
results for the usual microcanonical Gibbs ensemble with energy and par-
ticle density.

Here is an outline of our results. Under appropriate conditions on the
pair measures Pn, n ¥N, and for arbitrary boundary condition g ¥ W 2
{per, free} we will show for Pn Q P for nQ. that

Mg
n, Pn

Q nP ¥ G(fP) for nQ.,

where nP is the stationary Markov chain nP with pair marginal P, which is
the unique Gibbs measure nP with a nearest-neighbor interaction fP given
by the pair measure P and without self-interaction. In our second main
result the microcanonical constraint is given by a convex set P of pair
measures. Typically, P consists of all pair measures consistent with certain
particle densities and energy levels. We write Mg

n,P for the microcanonical
Gibbs ensemble which gives equal weight to configurations with type
frequencies given by the set P. If the entropy has a unique maximum Pg in
the set P, we will show that

Mg
n,P Q nPg ¥ G(fPg) for nQ.,

i.e., the complete equivalence for general microcanonical constraints of the
Gibbs ensembles for a nearest-neighbor interaction. Of course, the limit nPg

is the one predicted by the thermodynamic formalism.
The methods used for nearest-neighbor interaction can easily be

extended to finite range potentials. The microcanonical constraint in this
case is given by the frequency of k-samples for arbitrary k ¥N, if k is the
range of the potential. This gives the complete equivalence for finite range
potentials.
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Our proofs rely on an explicit counting of configurations with
prescribed type frequencies. The number of such configurations is related
to the number of Euler paths from the left to the right boundary state
(particle) in an oriented multigraph, defined by the given frequencies of
pairs. In Sections 2.1 and 2.2 we define the pair empirical measure to count
neighboring pairs and define the restricted microcanonical Gibbs ensemble.
The main results are stated in Section 2.3. In Section 3 we investigate the
cardinality of the set of configurations with given type frequencies with
methods of graph theory and give the conditions on the pair measures Pn,
whereas the final sections are devoted to the proofs of the main results.

2. RESULTS

2.1. The Setting

For the finite state space E and a finite L … Z the space of configura-
tions is WL :=EL, and for a configuration w ¥ WL the state or the particle
at the lattice site i ¥ L is wi :=w(i) ¥ E . The marginals P̄ and P̄̄ of a pair
measure P ¥P(E2), where P(E2) is the set of probability measures on E2,
are defined by

P̄(x) :=C
y ¥ E

P(x, y) and P̄̄(x) :=C
y ¥ E

P(y, x) for all x ¥ E.

We let P2 (E2) :={P ¥P(E2) : P̄=P̄̄} be the set of pair measures with
identical marginals.

A configuration in the finite box Ln :=[−n, n] 5 Z including the two
boundary pairs has vn :=|Ln |+1 neighboring pairs. The pair empirical
measure gives weight to frequencies of such configurations.

2.1. Definition. The pair empirical measure with boundary condi-
tion g ¥ W 2 {per, free} is the mapping L2, g

n : W QP(E2) with

(i) L2, g
n (w) := 1

vn
(;n−1

i=−n d(wi, wi+1)+d(g−n−1, w−n)+d(wn, gn+1)) for config-
urational boundary conditions g ¥ W, and with

(ii) L2, per
n (w) := 1

(vn −1) (;n−1
i=1 d(wi , wi+1)+d(wn, w−n)) for periodic bound-

ary conditions, and with

(iii) L2, free
n (w) := 1

vn−1
(;n−1

i=−n d(wi, wi+1)) for free boundary conditions.
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The pair empirical measure with periodic boundary has identical
marginals, i.e., L2, per

n (W) …P2 (E2). In general there exist boundary condi-
tions g ¥ W such that the pair empirical measure has no identical marginals,
i.e., L2, g

n (W)̂ …P2 (E2). With the free boundary condition we get for all
w ¥ W:

L2, free
n (w)=L2, g(w−n, wn)

n−1 (w)

with the boundary condition g(u, s) ¥ W defined by g−n(u, s)=u and
gn(u, s)=s for all n ¥N; therefore the properties of the pair empirical
measure with the free boundary condition follow from the pair empirical
measure with a configurational boundary condition.

Two configurations in WLn
with equal pair empirical measure have

identical frequencies of neighboring pairs. The set Tgn(P) :={w ¥ WLn
:

Lgn(w)=P} is called the pair type class of a pair measure P. We call a pair
measure P (n, g)-admissible if the pair type class is non-empty, i.e.,
Tgn(P) ]”. In Lemma 3.20 we will give precise conditions for a pair
measure P to be (n, g)-admissible.

2.2. The Gibbs Ensembles

The Gibbs ensembles are probability measures on the configuration
space WL for all finite subsets L of Z, whereas the infinite volume Gibbs
measure is a probability measure on the configuration space W of the
infinite system, both equipped their with Borel-s-algebra. We define the
microcanonical Gibbs ensemble for a given pair measure Pn as follows,
writing 1A for the indicator function of an event A.

2.2. Definition. (i) Let g ¥ W 2 {per, free}, l the counting measure
on E, and Pn, n ¥N, a (n, g)-admissible pair measure, i.e., Tgn(Pn) ]”. The
microcanonical Gibbs ensemble for Pn is the probability measure Mg

n, Pn
on

the configuration space WLn
with

Mg
n, Pn
(w) :=

1
Zn, Pn

(g)
1{L2, g

n =Pn}(w)=lLn(w | L2, g
n (w)=Pn)

for all w ¥ WLn
and the normalization constant Zn, Pn

(g) :=lLn(L2, g
n =Pn).
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The grandcanonical Gibbs ensemble is defined as follows. For a given
nearest neighbor potential f: E×EQ R and self-interaction k: EQ R and
w ¥ W let

H free
Ln
(w) := C

n−1

i=−n
f(wi, wi+1)+ C

i ¥ Ln

k(wi)

be the Hamiltonian with free boundary condition,

Hg
Ln
(w) :=H free

Ln
(w)+f(g−n−1, w−n)+f(wn, gn+1)

be the Hamiltonian with configurational boundary condition g ¥ W, and

Hper(w) :=H free
Ln
(w)+f(wn, w−n)

be the Hamiltonian for periodic boundary condition.

2.3. Definition. The grandcanonical Gibbs ensemble for the given
Hamiltonians and boundary condition g ¥ W 2 {per, free} is the probability
measure Ggn on WLn

with

Ggn(w) :=Zn(g)−1 exp{−Hg
Ln
(w)}

for all w ¥ WLn
and the normalization constantZn(g)=;w ¥WLn

exp{−Hg
Ln
(w)}.

The thermodynamic equilibrium state for the infinite system is the
Gibbs measure for the given nearest neighbor potential. For a finite L … Z
we write TL for the Borel-s-algebra of events outside L. We write
wgZ0L ¥ W for a configuration which has w as projection on WL and gZ0L as
projection on the complement.

2.4. Definition. A probability measure P ¥P(W) on the configura-
tion space W is called a Gibbs measure for the nearest neighbor (resp. finite
range) potential f and self-interaction k, if for all events A in the Borel-
s-algebra of the configuration space W and for all g ¥ W and all finite L … Z
we have

P(A |TL)(g)=
1

ZL(g)
C

w ¥ WLn

1A(wgZ0L) exp{−Hg
L(w)}

with the normalization constant

ZL(g) := C
w ¥ WLn

exp{−Hg
L(w)}.
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The set of all Gibbs measures for the nearest neighbor potential (resp. finite
range) f and self-interaction k is G(f, k).

The grandcanonical Gibbs ensemble converges in the thermodynamic
limit to the Gibbs measure with the given nearest neighbor (resp. finite
range) potential (see ref. 7).

2.3. The Results

A basic ingredient of our results is the existence and the independence
on the boundary conditions of the thermodynamic limit of the microcano-
nical mean entropy. The entropy of a probability measure P ¥P(E2) is
defined as

H(P) :=− C
x, y ¥ E

P(x, y) log P(x, y),

where we adopt the usual convention that 0 log 0=0.

2.5. Theorem. Let g ¥ W 2 {per, free} and Pn, n ¥N, (n, g)-admis-
sible pair measures, i.e., Tgn(Pn) ]” for all n ¥N. Then if Pn Q P for
nQ. and P strictly positive, the limit

S(P) := lim
n Q.

1
|Ln |

log Zn, Pn
(g)=log 1D

x ¥ E

1 P̄(x) P̄(x)

<y ¥ E P(x, y)P(x, y)
22

exists and is equal to the conditional entropy of P given the marginal P̄,
i.e., S(P)=H(P)−H(P̄). In particular S(P) is concave.

In the next theorem we get our first main result, which shows that the
restricted microcanonical Gibbs ensemble Mg

n, Pn
converges to a Gibbs

measure with nearest neighbor potential fP defined by

fP(wi, wi+1) :=˛ − log
P(wi, wi+1)
P̄(wi)

; P̄(wi) > 0

+.; P̄(wi)=0

for w ¥ W, i ¥ Z, and vanishing self-interaction k — 0.

2.6. Theorem. Let g ¥ W 2 {per, free} and (Pn)n ¥N a sequence of
(n, g)-admissible pair measures, i.e., Tgn(Pn) ]” for all n ¥N. If Pn Q P for
nQ. and P strictly positive, the microcanonical Gibbs ensemble Mg

n, Pn
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converges to the unique Gibbs measure with nearest neighbor interaction
fP and no self-interaction, i.e.,

lim
n Q.

Mg
n, Pn
=nP ¥ G(fP).

We define a set of pair measures with prescribed expectation values.

2.7. Definition. Let d \ 1 and f: E2 Q Rd be an arbitrary mapping.
For D … Rd we let

PD
f :={Q ¥P2 (E2) : Q(f) ¥ D}

be the set of pair measures with identical marginals and expectation vector
in D.

The usual microcanonical Gibbs ensemble is of the form Mg
n, f, D :=

lLn( · | L2, g
n ¥ PD

f) for suitable f.

2.8. Theorem. Let D … Rd be a closed convex set with D̊ ]”, and
let Pg ¥ PD

f be the unique measure which maximizes the entropy on PD
f.

For an arbitrary boundary condition g ¥ W 2 {per, free} the microcanoni-
cal Gibbs ensemble Mg

n, f, D converges to the unique Gibbs measure with
nearest neighbor interaction fPg and no self-interaction, i.e.,

lim
n Q.

Mg
n, f, D=nPg ¥ G(fPg).

Next we indicate how the preceeding results can be extended to the
case of finite range interaction. We condition on k-samples to get as a limit
a Gibbs measure with an interaction potential of finite range k. When we
have frequencies of k-samples we have (k−1)-samples at the boundaries
and have to use the k-sample empirical measure.

2.9. Definition. Let g ¥ W, k ¥N and vn :=|Ln |+k−1. The
k-sample empirical measure with configurational boundary condition g ¥ W

is the mapping Lk, g
n : W QP(Ek) with

Lk, g
n (w) :=

1
vn
1 C

n−(k−1)

i=−n
d(wi,..., wi+k−1)+ C

n

i=n−k+2
d(wi,..., wn, gn+1,..., gi+k−1)

+ C
−n−1

i=−n−k+1
d(gi,..., g−n−1, w−n,..., wi+k−1)

2 .
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The pure k-body interaction fP is defined by

fP(wi,..., wi+k−1)=˛ − log
P(wi,..., wi+k−1)
P̄(wi,..., wi+k−2)

; P̄(wi,..., wi+k−2) > 0

+.; P̄(wi,..., wi+k−2)=0

for i ¥ Z and w ¥ W. The microcanonical Gibbs ensembles Mk, g
n, Pn

and
Mk, g

n, f, D are defined analogously to the nearest neighbor case and we have
the same results.

2.10. Theorem. Let g ¥ W and Pn, n ¥N, probability measures on
Ek which are (n, g)-admissible.

(i) The microcanonical Gibbs ensemble Mk, g
n, Pn

converges for Pn Q P
for nQ. and P strictly positive to the unique Gibbs measure with pure
k-body interaction fP, i.e., limn Q. M

g, k
n, Pn
=nP ¥ G(fP).

(ii) Let D … Rd be a closed convex set with D̊ ]”, f: Ek Q Rd

a mapping, PD
f={Q ¥P2 (Ek) : Q(f) ¥ D} and let Pg ¥ PD

f be the unique
measure which maximizes the entropy on the set PD

f. Then the micro-
canonical Gibbs ensemble Mk, g

n, f, D converges to the unique Gibbs measure
with pure k-body interaction fPg, i.e.,

lim
n Q.

Mk, g
n, f, D=nPg ¥ G(fPg).

Thus we have derived the complete equivalence of the Gibbs ensembles.
If we take a grandcanonical Gibbs ensemble with a nearest neighbor
potential (finite range potential) we can calculate (see book of Georgii, (18)

Chapter 3) the transition matrix for the corresponding Markov chain
which describes the Gibbs measure for the given nearest neighbor potential;
and with this transition matrix we get a pair (k-sample) measure P and a
sequence (Pn)n ¥N with Pn Q P for nQ. and we know from our theorems
that the corresponding microcanonical Gibbs ensemble Mg

n, Pn
converges to

the same Gibbs measure. For this we give an example, the one-dimensional
lattice gas formulation of the Ising model: (17)

2.11. Example. In the lattice gas formulation of the Ising model we
have the state space E={0, 1}. The Hamiltonian with arbitrary configura-
tional boundary condition g ¥ W is given by Hg

Ln
(w)=−;n−1

i=−n wiwi+1−
(wngn+1+w−ng−n−1). We fix an energy density e > 0 and particle density
+ > 0 such that e > + and 1−2++e > 0. For any n ¥N let en and +n with
en Q e and +n Q + for nQ. energy and particle densities such that there
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exist some w ¥ WLn
satisfying v−1

n H
g
Ln
(w)=en and v−1

n NLn
(w)=+n. Here

NLn
(w)=;i ¥ Ln

wi is the number of particles (spins) in Ln. Then

{w ¥ WLn
: v−1

n H
g
Ln
(w)=en; v

−1
n NLn

(w)=+n}=Tgn(Pn)

for the pair measures Pn with Pn(1, 1)=en, P̄n(1)=+n+
1
vn

d1, g−n−1
, Pn(1, 0)

=(+n− en)+
1
vn

d1, g−n−1
, Pn(0, 1)=(+n− en)+

1
vn

d1, gn+1
and Pn(0, 0)=1−2+n

+en−
1
vn
(d1, g−n−1

+d1, gn+1
) and with limit P ¥P(E2) given by P(1, 1)=e,

P(0, 1)=P(1, 0)=+− e and P(0, 0)=1−2++e. From our results we know
that the microcanonical ensemble Mg

n, Pn
converges to the unique Gibbs

measure nP with nearest neighbor interaction fP and no self-interaction.
We have to compare this result with the expected result of the ther-

modynamic formalism. We let Zn, en, +n (g) be the normalization constant for
the microcanonical Gibbs ensemble Mg

n, Pn
given by the pair measure Pn. By

theorem (2.3) the microcanonical entropy s(e, +) :=limn Q.
1
vn

log Zn, en, +n (g)
exists. Its partial derivatives are the inverse temperature b :=“s

“e (e, +) and
the chemical potential m :=“s

“+ (e, +). We let f be the nearest neighbor
potential defined by f(wi, wi+1)=bwiwi+1 and k the self-interaction
k(x)=bmx for all x ¥ E. In view of Chapter 3 in ref. 18 the associated
unique Gibbs measure is the stationary Markov chain for a transition
matrix V, which can be computed as follows. Let g: E3 Q (0,.) with

g(x, y, z)=(Z{i}(gx, z))−1 C
t=0, 1

1{pi=y}(tig
x, z) exp{−Hg

x, z

{i} (ti)}

=
e−y(m+bx+bz)

1+e−(m+bx+bz)

the determining function for the configuration gx, z which has x as projec-
tion on {i−1} and z as projection on {i+1} and the projection pi: W Q E,
w Q wi on {i}. The corresponding transfer matrix is given by Q(x, y)=
g(a, x, y)/g(a, a, y) for all x, y ¥ E and an arbitrary a ¥ E. We have
V(x, y)=Q(x, y) r(y)/qr(x) where q is the largest positive eigenvalue and
r the corresponding right eigenvector. The result is

V=R
1−2++e

1−+

+− e

1−+

+− e

+

e

+

S .
This is precisely the transition matrix of nP. So, the measure nP is precisely
the limit predicted by thermodynamics.
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3. COUNTING OF PAIR TYPE CLASSES

In this section we count for fixed n ¥N the configurations w ¥ WLn

with L2, g
n (w)=P for an (n, g)-admissible pair measure P, that is we cal-

culate the cardinality of the pair type class Tgn(P). For the given pair
measure P we have a frequency matrix (f(x, y))x, y ¥ E with f(x, y) :=
vnP(x, y), x, y ¥ E. We let this matrix be the incidence matrix of an
oriented multigraph G with vertex set E and f(x, y) edges from vertex x to
vertex y. We have a multigraph because loops, edges from x to x itself, and
several edges between different vertices are allowed. Each configuration
w ¥ Tgn(P) corresponds to an Euler trail, a trail running through all edges
of the graph in the right direction and just once, from the vertex u :=g−n−1

to the vertex s :=gn+1. We therefore have to count the Euler trails. The
graph is connected if for every pair (x, y) of distinct vertices there is a path
from x to y. The in-degree of a vertex x is the number of edges ending at x,
and the out-degree is the number of edges starting at x. We call the graph
simple if for all vertices the in-degree equals the out-degree. If the graph G
is simple we can calculate the number of Euler circuits, which are Euler
trails whose end vertices coincide, by the so-called BEST-theorem. The
multigraph G is simple if u=s. In the case u ] s our multigraph becomes
simple if we augment him with an additional edge from s to u. In the
following we ignore all isolated vertices from E. We thus have the follow-
ing correspondence:

vnP ¥ ZE×E
+ } multigraph G with vertex set E and vn edges

vn(P̄− P̄̄)=du−ds } multigraph G simple, if u=s

w ¥ Tgn(P) } Euler trail from u to s

} Euler circuit with fixed endpoints

for the augmented multigraph G̃

Our pair type class Tgn(P) is non-empty if there exists an Euler circuit
in the augmented multigraph G̃. The next theorem tells us when this does
occur.

3.12. Theorem. A connected multigraph G has an Euler circuit if
and only if G is simple.

Proof. Theorem I.12 in ref. 19. L

Complete Equivalence of the Gibbs Ensembles for 1D Markov Systems 889



In the following we list conditions on the pair measures Pn, n ¥N, such
that the sets {w ¥ WLn

: L2, g
n (w)=Pn} are non-empty. For that we need the

absolute frequencies

vnPn(x, y) ¥ Z+ for all x, y ¥ E.(3.13)

Because of the boundary condition g the two marginals P̄n and P̄̄n differ in
general, i.e., we have

P̄n−P̄̄n=
1
vn
(dg−n−1

−dgn+1
).(3.14)

In Lemma 3.20 we will also need a suitable ordering x0,..., xln of the ele-
ments of D(P̄n) 2 {gn+1}, the union of the support D(P̄n) :={x ¥ E :
P̄n(x) > 0} of the marginal with the right boundary point, such that we
have

x0=g−n−1 and xln=gn+1 and Pn(xi, xi+1) > 0 for i=0,..., vn;(3.15)

it is therefore possible that an element of the support occurs several times
in the ordering. For periodic boundary conditions we need

(vn−1) Pn(x, y) ¥ Z+, P̄n=P̄̄n and(3.16)

an ordering (3.15) for the elements of D(P̄n) 2 {x} for all x ¥ D(P̄n).(3.17)

In the free boundary case we need

vn−1Pn(x, y) ¥ Z+ for all x, y ¥ E and a sequence(3.18)

((un, sn))n ¥N in E2 with P̄n−P̄̄n=
1
vn−1

(dsn −dun )

and an ordering (3.15) for the elements of D(P̄n) 2 {sn}.

3.19. Remark. For free boundary conditions with (3.18) we have in
the case un=sn for all n ¥N because of P̄n(x)− P̄̄n(x) for all x ¥ E several
different sequences ((ũn, s̃n))n ¥N with ũn=s̃n. In the case of un ] sn because
of P̄n(x)− P̄̄n(x)=

1
vn−1

(dx, un −dx, sn ) for all x ¥ E the states w−n and wn are
not free. In this case we have therefore no real free boundary condition. In
the following we restrict ourself to configurational boundary conditions.
The free boundary condition makes sense when we condition later on a set
of different frequencies.

In Lemma 3.20 we show that the pair type class Tgn(P) is not empty
if and only if the conditions (3.13)–(3.15) for g ¥ W or (3.16)–(3.17) for
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g=per hold. The free boundary condition follows from the configuration
one.

In complete analogy to the pair empirical measure we have conditions
like in (3.13)–(3.15) for the k-sample empirical measures Pn, n ¥N, for
example integer absolute frequencies and the difference in the marginals

vnPn(x1,..., xk) ¥ Z+, vn(P̄n−P̄̄n)=d(g−n−k+1,..., g−n−1)−d(gn+1,..., gn+k−1)

For periodic and free boundary condition similar properties have to be
fulfilled, but we restrict here on configurational boundary conditions.

3.20. Lemma. (i) For g ¥ W the pair type class Tgn(P) is non-
empty, i.e., P is (n, g)-admissible, if and only if P satisfies the conditions
(3.13)–(3.15).

(ii) The pair type class Tper
n (P) is non-empty if and only if P satisfies

the conditions (3.16)–(3.17).

Proof. From the ordering (3.15) we get an Euler path from u to s.
The multigraph is therefore connected. Because of our condition (3.15) all
vertices which are not the boundary vertices have same in-degree and out-
degree. With our extra edge from s to u we have coinciding in- and out-
degrees for all x ¥ E (we have assumed above that E contains no isolated
vertices), that is the augmented multigraph is simple and connected. With
Theorem 3.12 we get the result.

(ii) follows directly from Theorem 3.12. L

Our microcanonical Gibbs ensembles for the pair measures are well
defined and in the next theorem we calculate the cardinality of the pair
type class which is the normalization constant for the microcanonical
Gibbs ensemble Mg

n, P, i.e., Zn, P(g)=|Tgn(P)|.

3.21. Theorem. Let g ¥ W and P a pair measure with (3.13)–(3.15).
Then

Zn, P(g)=Bg
s, u(P) D

x ¥ E

1 f̄(x)!
<y ¥ E f(x, y)!

2 ,

where f̄ :=vnP̄ and Bg
s, u(P) is the (s, u)-minor determinant of the matrix

Bg(P)=(Bg(P)(x, y))x, y ¥ E. Here

Bg(P)(x, y) :=˛dx, y−
P(x, y)
P̄(x)

; P̄(x) > 0,

dx, y; P̄(x)=0,
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and the (s, u)-minor determinant is obtained as the determinant of the
matrix which is obtained from Bg(P) by deleting the sth row and uth
column. An analogous result is obtained for g=per.

Proof. For a simple connected multigraph there are proofs in refs. 20
and 21 which don’t refer to graph theory. The graph theoretic approach
goes back to Tutte. (22) We sketch here a proof for our augmented multi-
graph with the so-called BEST-theorem, which gives the number of differ-
ent Euler circuits in an oriented connected simple multigraph, and show
how to get the number of Euler trails in the original multigraph.

BEST Theorem. Let M=(m(x, y))x, y ¥ E be the incidence matrix of
a simple connected oriented multigraph G. Then the number s(G) of dif-
ferent Euler circuits is given by

s(G)=|Mg| D
x ¥ E

(m̄(x)−1)!

where |Mg| is an arbitrary minor determinant of the matrix Mg=
(mg(x, y))x, y ¥ E with mg(x, y)=m̄(x) dx, y−m(x, y) for all x, y ¥ E.

Proof. From Theorem I.13 in ref. 19 we get

s(G)=ty D
x ¥ E

(m̄(x)−1)!,

where ty is the number of spanning trees oriented to an arbitrary vertex
y ¥ E in the multigraph G. In particular ty=tx for all x, y ¥ E. From
ref. 23 it follows that the number of spanning trees oriented to an arbitrary
vertex is given by an arbitrary minor determinant of the matrix Mg. L

If the boundary points are distinct we need an extra edge from s to u
and as incidence matrix we choose M=(m(x, y))x, y ¥ E with

m(x, y)=f(x, y) for all (x, y) ] (s, u) and

m(s, u)=f(s, u)+1,

so that m̄(x)=m̄̄(x) for all x ¥ E. We let Nu, s(M) be the number of trails
from u to s. If the edges are distinguishable, we have:

Nu, s(G)=s(G) m(s, u)=|Mg| m(s, u) D
x ¥ E

(m̄(x)−1)!

with a minor determinant |Mg| of the matrix Mg=(mg(x, y))x, y ¥ E with
mg(x, y)=m̄(x) dx, y−m(x, y) for all x, y ¥ E. If these edges are not
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distinguishable, then the number of Euler trails that begin in u and end in s
is Uu, s(G) and equals the number of configurations w ¥ Tgn(P):

Uu, s(G)=
|Mg| m(s, u)<x ¥ E (m̄(x)−1)!

<x, y ¥ E m(x, y)!
=

|Mg|
<x ¥ E

x ] s
m̄(x)

<x ¥ E f̄(x)!
<x, y ¥ E f(x, y)!

,

and we define fg(P)(x, y) :=dx, y−
P(x, y)
P̄(x) for all x, y ¥ E, and we conclude

|Mg|
<x ¥ E

x ] s
m̄(x)

=Bg
s, r(P) for all r ¥ E,

which means that Bg
s, u(P) does not depend on the left boundary conditions.

For periodic boundary conditions the result follows directly from the BEST
Theorem. L

We will need an explicit expression for the boundary dependent factor
Bg

s (P):

3.22. Corollary. Let P be a pair measure with (3.13)–(3.15). Then
for all s ¥ E we have

Bg
s, s(P)=C

u ¥ U

D
x ¥ E0{s}

P(x, u(x))
P̄(x)

,

with U :={u: E0{s}Q E, uk(x) ] x -k ¥N, x ¥ E0{s}}.

Proof. This follows immediately from the number of spanning trees
oriented towards s (see the proofs in refs. 23 and 24). L

Next we observe that the factorial terms in Theorem 2.5 can be
estimated in terms of conditional entropy.

3.23. Lemma. Let P be a pair measure such that Tgn(P) ]”. Then

v−|E|2− |E|
n evn(H(P)−H(P̄)) [ Zn, P(g) [ evn(H(P)−H(P̄)).

Proof. It follows immediately from Corollary 3.22 that

1
v |E|

n

[ Bg
s, s(P) [ 1.

With Lemma I.2.5 in ref. 25 we get the result. It is the same result as in
3.1.22 of ref. 26 where no boundary conditions are considered. L
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Theorem 2.5 is an immediate consequence of the preceeding lemma.
The concavity of S follows from the concavity of the conditional entropy
H(P)−H(P̄). (25) L

4. PROOF OF THEOREM 2.6

We proceed in three steps. First we calculate the probability for an
arbitrary cylinder event, where we divide the system into the subsystems
left and right of the cylinder event. Then we approximate the sum by an
integral. We can calculate the integral with the Laplace method. For that
we need uniform convergence of the integrand and of the function in the
exponent. In a last step we show that the errors we make are negligible in
the limit nQ..

4.1. The Calculation of the Cylinder Probability

Let i ¥ Z and k ¥N and x0,..., xk ¥ E and n ¥N be so large that i ¥ Ln

and i+k ¥ Ln. Let pi: W Q E; w W wi be the projection on the lattice site i.
Then

Mg
n, Pn
(pi=x0,..., pi+k=xk)(4.24)

=Ä{w ¥ WLn
: wi=x0,..., wi+k=xk; L

2, g
n (w)=Pn}/Zn, Pn

(g).

To calculate the numerator of (4.24) we take the two subsystems in
L1

n :={−n,..., i−1} with boundary condition g1 ¥ W with g1
−n−1=u and

g1
i=x0 and in L2

n :={i+k+1,..., n} with g2 ¥ W with g2
i+k=xk and

g2
n+1=s. Both systems are connected via the microcanonical constraint: the

frequency of the pairs in both systems and in the cylinder event have to
sum up to the given frequency. Let

k(x, y) :=C
k−1

j=0
d(xj, xj+1)(x, y) for all x, y ¥ E

the number of pairs (x, y) of the cylinder event with marginal k̄(x) :=
;y ¥ E k(x, y) for all x ¥ E. We write (4.24) as a sum over the frequencies in
L1

n over the product of the number of compatible configurations in L1
n with

boundary condition g1 ¥ W and in L2
n with boundary condition g2 ¥ W. For

a configuration w ¥ {w ¥ WLn
: wi=x0,..., wi+k=xk; L

2, g
n =Pn} we let for

all x, y ¥ E

f1
n(x, y) := C

i−2

j=−n
d(wj, wj+1)(x, y)+d(un, w−n)(x, y)+d(wi−1, x0)(x, y)
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be the frequency of the pairs (x, y) in w ¥ WL1
n
with boundary g1 ¥ W and

f2
n(x, y) :=f(x, y)−k(x, y)−f1

n(x, y)

the frequency of the pairs (x, y) in L2
n with boundary g2 ¥ W. The asso-

ciated pair measure P1
n is defined by P1

n(x, y) :=f1
n(x, y)/v

1
n for all x, y ¥ E

with v1
n :=n+i+1 and with properties analogous to (3.13)–(3.15):

(i) v1
nP

1
n(x, y) ¥ Z+ for all x, y ¥ E; P̄1

n−P̄̄
1
n=

1
v1

n

(du−dx0
), n ¥N

(ii) there exist an ordering (3.15) for the elements of D(P1
n) 2 {x0}.

We get the pair measure

P2
n(x, y) :=

f(x, y)−k(x, y)−f1
n(x, y)

v2
n

for all x, y ¥ E and for all n ¥N,

depending on P1
n with v2

n :=n−i−k+1. The so defined pair measures have
analogous properties to (i) and (ii). We have to sum the products

Ä{w ¥ WLn
: L2, g1

{n+i+1}(w)=P1
n}Ä{w ¥ WLn

: L2, g2

{n−i−k+1}(w)=P2
n}

over all possible pair measures P1
n. Because of f2

n(x, y) \ 0 we need

f1
n(x, y) [ vnPn(x, y)−k(x, y) for all x, y ¥ E

and define

U(n) :=3Q ¥P(E2) : v1
nQ ¥ ZE×E

+ ; Q [
vnPn−k
v1

n

, Q̄− Q̄̄=
1
v1

n

(du−dx0
)4.

The set U(n) is finite and from (4.24) we thus get the sum over P1
n ¥ U(n)

Mg
n, Pn
(pi=x0,..., pi+k=xk)

= C
P1

n ¥ U(n)

|Tg
1

L
1
n
(P1

n)| |T
g
2

L
2
n
(P2

n)|
|Tgn(Pn)|

= C
P1

n ¥ U(n)

Bg
x0, u(P

1
n)<x ¥ E
1 f̄1

n(x)!
<y ¥ E f

1
n(x, y)!
2 Bg

s, xk
(P2

n) D
x ¥ E

1 f̄2
n(x)!

<y ¥ E f
2
n(x, y)!
2

Bg
s, u(Pn) D

x ¥ E

1 f̄(x)!
<y ¥ E f(x, y)!

2
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We want to approximate the last sum by means of Stirling’s formula. We
first show that the terms outside a neighborhood of Pn vanish.

4.25. Lemma. Let U(Pn) be a neighborhood of Pn with U(Pn) …
U(n). Then in the sum for Mg

n, Pn
(pi=x0,..., pi+k=xk) the terms outside

U(Pn) vanish in the limit nQ..

Proof. From Lemma 3.23 we conclude with the conditional entropy
S(P)=H(P)−H(P̄):

|Tg
1

L
1
n
(P1

n)| |T
g
2

L
2
n
(P2

n)|
|Tgn(Pn)|

[
exp{v1

nS(P
1
n)} exp{v2

nS(P
2
n)}

exp{vnS(Pn)−(|E|2+|E|) log vn}
(4.26)

=v |E|2+|E|
n exp{(i+1) S(P1

n)−(i+k−1) S(P
2
n)}

× exp{n(S(P1
n)+S(P

2
n)−2S(Pn)}.

Outside the neighborhood U(Pn) of Pn we find (see Lemma 4.33) a
t > 0 with:

exp{n(S(P1
n)+S(P

2
n)−2S(Pn)} [ e−nt.

Since S(P i
n) [ log |E|, i=1, 2, we find a constant C with:

C
P1

n ¨U(Pn)

|Tg
1

L
1
n
(P1

n)| |T
g
2

L
2
n
(P2

n)|
|Tgn(Pn)|

[ C C
P1

n ¨U(Pn)
v |E|2+|E|

n e−ntQ 0 for nQ.,

because the number of terms is a power of n. L

Since Pn Q P for nQ. and P is positive we can assume that there
exists an a > 0 with

Pn(x, y) > a > 0 for all x, y ¥ E and for all n ¥N.

With

rn(P
1
n) :=

Bg
x0, u(P

1
n) B

g
s, xk
(P2

n)
Bg

s, u(Pn)

and the Stirling approximation we find by collecting terms

Mn= C
P1

n ¥U(Pn)
rn(P

1
n) D

x ¥ E

1 f̄1
n(x)! f̄

2
n(x)!<y ¥ E f(x, y)!

f̄(x)!<y ¥ E f
1
n(x, y)! f

2
n(x, y)!
2

= C
P1

n ¥ U(n)
(2pn)−n/2 g(P1

n) Kn(P
1
n) exp{nSn(P

1
n)},
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where n :=|E|2−|E| and Mn is defined by Mg
n, Pn
(pi=x0,..., pi+k=xk)=

Mn+o(1). The function Kn(Q) is coming from all errors of the Stirling
approximation and satisfies

sup
Q ¥U(Pn)

|Kn(Q)−1|Q 0 for nQ.,

the function g is defined by

g(Q) :=2
n

2 1B
g
x0, x0

(Q) Bg
s, s(2P−Q)

Bg
s, s(P)

2

×D
x ¥ E

31 Q̄(x)(2P̄(x)−Q̄(x))<y ¥ E P(x, y)
P̄(x)<y ¥ E Q(x, y)(2P(x, y)−Q(x, y))

2
1
2

×1 Q̄(x) (i+1) Q̄(x) (2P̄(x)−Q̄(x))2P̄(x)− k̄(x)−(i+1) Q̄(x) <y ¥ E P(x, y)2P(x, y)

P̄(x)2P̄(x) <y ¥ E (Q(x, y) (i+1) Q(x, y) (2P(x, y)−Q(x, y))2P(x, y)−k(x, y)−(i+1) Q(x, y)
24,

and the function Sn is defined by

Sn(Q) :=S(Q)+S(2Pn−Q)−2S(Pn)

for all Q ¥U(Pn), if U(Pn) is sufficient small such that we have Q [ 2Pn for
all Q ¥U(Pn).

4.2. The Laplace Method

We want to calculate the last sum for Mg
n, Pn
(pi=x0,..., pi+k=xk) with the

Laplace method. The function Sn and its limit S with S(Q) :=S(Q)+
S(2P−Q)−2S(P), which is defined for all Q ¥ U :={Q ¥P2 (E2) : Q [ 2P},
are concave. For S we have

S(Q) [ 0 for all Q ¥ U and S(Q)=0 Z Q=P.

The same holds for the functions Sn, n ¥N. We want to express the pair
measure Q ¥U(Pn) by an n-dimensional vector. This is possible because our
pair measures have approximatively identical marginals, i.e., Q̄̄=
Q̄− 1

v1
n
(du−dx0

). Thus every pair measure Q ¥U(Pn) corresponds to the
pair measure Q̃= 1

v1
n
(v1

nQ+du, x0
) with identical marginals. We have the

mapping j: P2 (E2)Q Rn on the n-dimensional coordinates and define
the following sets, where we identify the set of probability measures with
the corresponding set in Rn:
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(a) The lattice G(n) :={Q ¥ Rn : there exist a Q ¥U(Pn) 5 U(n) with
Q=j(Q̃)}

(b) Gn :={Q ¥ Rn : there exist a Q ¥U(Pn) with Q=j(Q̃)}

(c) G :={Q ¥ Rn : there exist a Q ¥ U with Q=j(Q̃)}

In order to use the Laplace method we write

Mn= C
Q ¥ G(n)

(2pn)−n/2 g(Q) Kn(Q) exp{nSn(Q)}

=n
n

2 F
Gn

dQ(2p)−n/2 g(Q) Kn(Q) exp{nSn(Q)}+R1(n)

with an error term R1(n) coming from the integral approximation. We
identify the measure Pn with their n-dimensional variable Pn ¥ Gn (resp. the
measure P with P ¥ G). The essential part of the integral is in a neigh-
borhood of Pn ¥ Gn. We can choose a d > 0 independently of n ¥N, such
that

Ud(Pn) … Gn, Ud(Pn) ¦ P and Ud(Pn) …U2d(P)

for sufficiently large n ¥N. We decompose the last integral into the two
contributions

I(d, n) :=1 n
2p
2
n

2

F
Ud(Pn)

dQ g(Q) Kn(Q) exp{nSn(Q)}

and

R2(n, d) :=1 n
2p
2
n

2

F
Gn0Ud(Pn)

dQ g(Q) Kn(Q) exp{nSn(Q)}.

To control the first term we expand Sn in a Taylor series around the
maximum point up to second order. Let Hn be the Hessian matrix for Sn in
the maximum point Pn and let

r(d) := max
S ¥ Ūd(P)

{|r(S)|}

be the bound of the error terms in the Taylor expansion, which is bounded
independently of n ¥N because of the uniform convergence of the

898 Adams



integrand in the compact set Ūd(P). The Hessian matrix is negative definite
and we get the inequality:

(S−Pn) t (Hn−r(d) id)(S−Pn) [ 2Sn(S) [ (S−Pn) t (Hn+r(d) id)(S−Pn).

Using the abbreviations

g+
n := max

S ¥Ud(P)
{g(S) Kn(S)}, g−

n := min
S ¥Ud(P)

{g(S) Kn(S)},

we conclude further that I(d, n) is sandwiched between the integrals

I ±(d, n) :=g ±
n
1 n
2p
2
n

2

F
Ud(P)

dS exp 3n
2
((S−Pn) t (Hn±r(d) id)(S−Pn))4 .

We can calculate the Gaussian integral and find

I+(d, n) [ g+
n /`det(−Hn−r(d) id) and

I−(d, n) \ g−
n /`det(−Hn+r(d) id)−

g−
n

2p
n
2
I3(d, n)

with

I3(d, n) :=n
n

2 F
R
n
0Ud(P)

dS exp 3n
2
((S−Pn) t (Hn−r(d) id)(S−Pn))4

outside the neighborhood Ud(P). We will show in Lemma 4.32 that

R3(n, d) :=1 g
−
n

(2p)
n
2

21`det(−H)

g(P)
2 I3(d, n)

converges to zero, where H is the Hessian of S in the maximum point P
and where we changed back to the old variables. Using the uniform con-
vergence of (Kn)n ¥N on Ūd(P) we thus obtain the following result.

4.27. Proposition. For all e > 0 there exist a d(e) > 0 and a
n(e, d) ¥N with

− e+1 <
I(d, n)`det(−H)

g(P)
< 1+e for all n \ n(e).
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We are now able to calculate the cylinder probabilities. We conclude
from Proposition 4.27 and the preceding results

Mg
n, Pn
(pi=x0,..., pi+k=xk)=R1(n)+R2(n, d)+I(d, n)+o(1).

We have two convergence schemes. On the one hand the functions (Sn)n ¥N

and the the Hessian (Hn)n ¥N converge for nQ.. On the other hand we
can choose d(e) > 0 so small that the error in the Taylor expansion of Sn is
kept small enough. Combining this with the uniform convergence of the
functions Kn and Sn we obtain the following result.

4.28. Proposition. For all g ¥ W 2 {per, free} and Pn Q P for
nQ. the cylinder probability converges, i.e.,

Mg
n, Pn
(pi=x0,..., pi+k=xk)Q

g(P)

`det(−H)
for nQ..

Theorem 2.6 will be proved once we have shown that the limit is the
cylinder probability of the stationary Markov chain with marginal P.

4.29. Proposition. The equality

g(P)

`det(−H)
=nP(pi=x0,..., pi+k=xk)

holds.

Proof. The value of g at the maximum point P is

g(P)=2n/2P̄(x0) D
k−1

j=0

1P(xj, xj+1)
P̄(xj)
2
`D

x ¥ E
(P̄(x) D

y ¥ E
P(x, y))

−1

× C
u ¥ U

D
x ¥ E0{x0}

P(x,u(x))

=nP(pi=x0,..., pi+k=xk)`D
x ¥ E

(P̄(x) D
y ¥ E

P(x, y))
−1

× C
u ¥ U

D
x ¥ E0{x0}

P(x, u(x)).

From Theorem I.13 in ref. 19 we know that the number of spanning trees
ty oriented towards y ¥ E is independent of y. Therefore the sum
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C
u ¥ U

D
x ¥ E0{x0}

Pn(x, u(x))= D
x ¥ E0{x0}

P̄n(x)
tx0

<x ¥ E0{x0} m̄(x)

=tx0
v |E|−1

n

does not depend explicitly on x0. This holds also in the limit Pn Q P for
nQ.. Thus we have g(P)=np(pi=x0,..., pi+k=xk) G with some con-
stant G. Since probabilities are normalized, we must have G/`det(−H)=1.
This gives the result. L

4.3. Error Estimates

In the next lemmas we show first the uniform convergence of (Sn)n ¥N

and then estimate our different error terms.

4.30. Lemma. The sequence (Sn)n ¥N converges uniformly to the
function S.

Proof. This follows readily from the uniform continuity of the
entropy H, cf. ref. 25, Lemma I.2.5. L

In the next lemma we show that the integral outside of a neigh-
borhood of the maximum point vanishes in the limit.

4.31. Lemma. Let d > 0 and

R2(n, d) :=1 n
2p
2
n

2

F
Gn0Ud(Pn)

dQ g(Q) Kn(Q) enSn(Q).

Then for every e > 0 there exists a n(e) ¥N with |R2(n, d)| < e for all
n \ n(e).

Proof. There exist a n0 ¥N with

Ud

2
(P) …Ud(Pn) for all n \ n0,

and replacing G by a small neighborhood we can assume that Gn … G for
sufficiently large n ¥N, hence

|R2(n, d)| [ 1 n
2p
2
n

2

F
G0Ud

2
(P)
dQ 1Gn

(Q) g(Q) Kn(Q) enSn(Q)
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for all n \ n0. Next, we have

sup
Q ¥ G0Ud

2
(P)
{Sn(Q)} [ sup

Q ¥ G0Ud
2
(P)
{|Sn(Q)−S(Q)|+S(Q)}

and a(d) :=maxQ ¥ G0Ud
2
(P) {S(Q)} < 0 because of the concavity of S.

Hence

|R2(n, d)| [ 1 n
2p
2
n

2

F
G0Ud

2
(P)
dQ 1Gn

(Q) g(Q) Kn(Q) e−nt

with t=a(d)/2 when n is large enough. Finally the inequality (4.26)
implies that gKn is bounded outside the neighborhood of the maximum point.
The lemma thus follows from the dominated convergence theorem. L

4.32. Lemma. Let

R3(n, d) :=1 n
2p
2
n

2 g−
n

g(P)
`det(−H)

×F
R
n
0Ud(P)

dS exp 3 −n
2
[(S−Pn)T (Hn−r(d) id)(S−Pn)]4 .

Then there exist for any e > 0 a d > 0 and a n(e) ¥N with |R3(n, d)| < e for
all n \ n(e).

Proof. The symmetric matrix (−Hn+r(d) id) is positive definite.
Therefore the smallest eigenvalue lmin(n) > 0 is positive and l(n)min con-
verges to the smallest eigenvalue of (−H+r(d) id) as nQ.. Hence
(S−Pn)T (Hn−r(d) id)(S−Pn) \ c |S−P|2 for some c > 0 and all suffi-
ciently large n. This gives

|R3(n, d)| [ 1 g
−
n

g(P)
2 `det(−H) 1 n

2p
2
n

2

×F
R
n
0Ud(P)

dS exp 3 −n
2

c(S−P)T (S−P)4 .

By ChebyshevŒs inequality, the last term vanishes in the limit nQ.. L

Next we treat the error in the integral approximation.
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4.33. Lemma. Let

R1(n) :=n
n

2 1 C
Q ¥ G(n)

g(Q) Kn(Q)
(n2)n/2

exp{nSn(Q)}

−F
Gn

dQ g(Q) Kn(Q) exp{nSn(Q)}2.

Then R1(n)Q 0 as nQ..

Proof. We split R1 into two terms corresponding to the error outside
and inside the neighborhood of the maximum point Pn. In the following let
Un :=Ud(Pn) and define U(n) :=G(n) 5Un for the lattice.

The estimation outside Un is similar to Lemma 4.31 for the sum
and the integral. In the following we take H−

n :=−Hn(Pn)+r(d) id and
H+

n :=−Hn(Pn)−r(d) id and d > 0 small enough for H+
n being positive

definite. We get

g−
n n
n/2 F

Un

dQ e−n
2 (Q−Pn)

T H−
n (Q−Pn)

[ nn/2 F
Un

dQ g(Q−Pn) Kn(Q−Pn) enSn(Q−Pn)

[ g+
n n
n/2 F

Un

dQ e−n
2 (Q−Pn)

T H+
n (Q−Pn)

for the integral and similarly for the sum over Q ¥ G(n). Since g+
n /g

−
n Q 1

for nQ. and d small enough we therefore only need to estimate the
differences

S ±
n :=nn/2 F

Un

dQ e−n
2 (Q−Pn)

T H ±
n (Q−Pn)−nn/2 C

Q ¥U(n)

1
nn
e−n

2 (Q−Pn)
T H+n (Q−Pn).

Now

R1(n)|Un
[ nn/2 1F

Un

dQ e−n
2 (Q−Pn)

T H−
n (Q−Pn)− C

Q ¥U(n)

1
nn
e−n

2 (Q−Pn)
T H−

n (Q−Pn)2
(4.34)

+nn/2 F
Un

dQ e−n
2 (Q−Pn)

T H−
n (Q−Pn)

nn/2 1F
Un

dQ e−n
2 (Q−Pn)

T H+
n (Q−Pn)−F

Un

dQ e−n
2 (Q−Pn)

T H−
n (Q−Pn)2.
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We have to estimate every term in (4.34). We sketch here the proof for the
first term: In the following we write Hn instead of H−

n . Consider the
mapping

Y: Un Q Y(Un), QW=1n
2
2 H 1

2
n(Q−Pn)

with inverse

Y−1: Y(Un)QUn, TW=12
n
2 H−1

2
n (T+Pn)

and Jacobian

|det DY−1|=12
n
2
n

2 1

`det Hn

.

Transforming the integral we obtain

nn/2 F
Un

dQ e−n
2 (Q−Pn)

T Hn(Q−Pn)=F
Y(Un)

dT
e−(T+Pn)

T (T+Pn)

`det Hn

.

The lattice U(n) … G(n) is transformed to the parallelepiped lattice
Y(U(n)). The volume Vn of an elementary parallelepiped is

Vn=det 1Y 1e1
n
2 ,..., Y 1en

n
22=1 1

2n
2n/2 det(H1/2

n )

=1 1
2n
2
n

2

`det Hn.

Hence

C
Q ¥U(n)

1
nn
e−n

2 (Q−Pn)
T Hn(Q−Pn)= C

Tn
¥Y(U(n))

12
n
2
n

2 Vn

`det Hn

e−(Tn+Pn)
T (Tn+Pn).

The vector Tn ¥ Y(U(n)) is a vertex of an elementary parallelepiped P(Tn).
Therefore

nn/2 :F
Un

dQ e−n
2 (Q−Pn)

T Hn(Q−Pn)− C
Q ¥U(n)

e−n
2 (Q−Pn)

T Hn(Q−Pn)

nn
:

[ C
Tn

¥Y(U(n))

1

`det Hn

F
P(Tn)

dT e−|T+Pn|
2
|1−e |T+Pn|

2− |Tn+Pn|
2
|.
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As the modulus in the last term converges to zero uniformly in n, the last
expression tends to zero as nQ.. The other terms in (4.34) are estimated
similar to Lemma 4.32. L

5. PROOF OF THEOREM 2.8

To prove the theorem we need the following large deviation result.

5.35. Definition. (i) Let l be an a priori measure on E. The rela-
tive entropy H(Q; Q̄ é l) of a probability measure Q ¥P(E2) and Q̄ é l is

H(Q; Q̄ é l) := C
x, y ¥ E

Q(x, y) log
Q(x, y)
Q̄(x) l(y)

.

(ii) Let ” ] P …P2 (E2) closed. A pair measure Pg ¥ P is called
minimal measure for the set P, if

H(Pg; P̄g é l)=min
Q ¥P

H(Q; Q̄ é l),

i.e., it maximizes the entropy on P.

If l is the counting measure on E the relative entropy is the negative
conditional entropy: H(Q; Q̄ é l)=−S(P)=H(P)−H(P̄). The follow-
ing proposition establishes a large deviation result for the empirical pair
measure with arbitrary boundary conditions.

5.36. Proposition. Let ” ] P …P2 (E2) with P=P0 5P2 (E2) for
P0 …P(E2) with P0 … P̊̄0 and g ¥ W 2 {per, free}. Then the limit

lim
n Q.

1
|Ln |

log lLn(L2, g
n ¥ P)=− inf

Q ¥P
H(Q; Q̄ é l)=−min

Q ¥ P̄
H(Q; Q̄ é l)

exists.

Proof. The proof for the pair empirical measure with periodic
boundary condition is given in ref. 27, Chapter I. Let Pg

n the set of pair
measures with non-empty pair type class. Then |Pg

n | [ v
|E|2

n , and therefore

lLn(L2, g
n ¥ P)= C

Q ¥P 5P
g
n

lLn(L2, g
n =Q)

[ v |E|2

n exp{−vn min
Q ¥P 5P

g
n

H(Q; Q̄ é l)}.
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Similarly,

lLn(L2, g
n ¥ P) \ max

Q ¥P 5P
g
n

lLn(L2, g
n =Q)

\ v−|E|2− |E| exp{−vn min
Q ¥P 5P

g
n

H(Q; Q̄ é l)}.

It is therefore sufficient to show that

lim
n Q.

min
Q ¥P 5P

g
n

H(Q; Q̄ é l)= inf
Q ¥P

H(Q; Q̄ é l)=min
Q ¥ P̄

H(Q; Q̄ é l)

holds. This will follow once we have shown that

lim sup
n Q.

min
Q ¥P 5P

g
n

H(Q; Q̄ é l) [ min
Q ¥ P̄

H(Q; Q̄ é l)

holds. The latter, however, follows from the assumptions on P and stan-
dard continuity arguments. L

Now we are able to prove our Theorem 2.8. We take D :=
H(Pg; P̄g é l)=minQ ¥P

D
f
H(Q; Q̄ é l) if Pg is the minimal measure and

P e :={Q ¥ P̄D
f : ||Q−P

g|| \ e}

for an arbitrary e > 0. Since P e is compact, D e :=minQ ¥P
e H(Q; Q̄ é l)

> D > 0. Proposition 5.36 thus gives

1
vn

log lLn(max
x, y ¥ E

|L2, g
n (x, y)−Pg(x, y)| \ e | L2, g

n ¥ PD
f)Q −D e+D< 0

for nQ., and therefore

Mg
n,f,D(||L

g
n−P

g|| \ e)Q 0 for nQ..

On the other hand the uniform convergence of lLn(pi=x0,..., pi+k=xk |
L2, g

n =P) to P̄(x0)<k−1
j=0

P(xj, xj+1)

P̄(xj)
implies the following corollary:

5.37. Corollary. For every e > 0, i ¥ Z and k ¥N there exist a z > 0
and a n0 ¥N, such that for all x0,..., xk ¥ E

:lLn(pi=x0,..., pi+k=xk | L
2, g
n =P)−P̄g(x) D

k−1

j=0

Pg(xj, xj+1)
P̄g(xj)
: < e,

if P ¥Pg
n and ||P−Pg|| [ z and n \ n0.

The rest is routine. L
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6. EXTENSION TO FINITE-RANGE POTENTIALS

To get the results for the k-sample case we have to count the configu-
rations w ¥ WLn

compatible with a given frequency of k-samples. The
number of k-samples (x1,..., xk) is f(x1,..., xk) :=vnPn(x1,..., xk). In this
case G is the oriented multigraph with the (k−1)-sample as vertices in Ek−1

and with f(x1,..., xk) edges from vertex (x1,..., xk−1) to vertex (x2,..., xk).
If we take an extra edge from the vertex (gn+1,..., gn+k−1) to the vertex
(g−n−k+1,..., g−n−1) the graph is simple and connected because of our
assumption on the measure Pn. This multigraph corresponds to the mul-
tigraph for the pair empirical measure if we identify every k-sample
(x1,..., xk) with the ordered pair

(x1,..., xk−1; x2,..., xk) ¥ Ek−1×Ek−1.

Thus the proceeding proofs for the pair empirical measure are applicable
and we get as limit measure a Markov chain with transition matrix
(Q̃(x̄, ȳ))x̄, ȳ ¥ Ek−1, where Q̃(x̄, ȳ)=0 except when (x2,..., xk)=(y1,..., yk−1),
and in this case

Q̃(x1,..., xk−1, x2,..., xk)=
P(x1,..., xk)
P̄(x1,..., xk−1)

.

This Markov chain on Ek−1 is of order 1. We get a transition matrix Q on
E of order k by setting

Q(x1,..., xk−1; xk) :=Q̃(x1,..., xk−1; x2,..., xk).

This associated stationary k-order Markov chain is the unique Gibbs
measure for the pure k-body potential fQP. L
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